B. Sc. Semester I (Honours) Examination, 2020 (CBCS)

Subject: Physics

Paper: CC-I

Time: 2 Hours
Full Marks: 40

Candidates are required to give their answers in their own words as far as practicable.

Answer any eight of the following questions (all questions carry equal marks): $\quad 5 \times 8=40$

1. Find the equation of the line of intersection of the planes $2 x-3 y+4 z=2$ and $x+y-$ $2 \mathrm{z}=3$.
2. Evaluate $\iint \boldsymbol{A} . \boldsymbol{n} d s$, where $\mathbf{A}=\left(\mathrm{x}+\mathrm{y}^{2}\right) \mathbf{i}-2 \mathrm{x} \mathbf{j}+2 \mathrm{yz} \mathbf{k}$ and S is the surface of the plane $2 x+y+2 z=6$ in the first octant and \mathbf{n} is the unit normal to S.
3. Verify Stoke's theorem for the vector field $\mathbf{F}=\mathbf{i}(2 x-y)+\mathbf{j} y z^{2}-\mathbf{k} y^{2} z$ over the upper half of the sphere $x^{2}+y^{2}+z^{2}=16$
4. Solve the differential equation : $D^{2} y+y=\sec (x)$ where $D=d / d x$
5. Determine the expression for $\boldsymbol{\nabla} X \boldsymbol{A}$ in curvilinear co-ordinates and write the expression in spherical co-ordinates.
6. In a bombing exercise, there is 50% chance that any bomb will strike a target. Two direct hits are needed to destroy the target completely. How many bombs are to be dropped to give 99% chance of completely destroying the target? (given that $2^{11}=$ 2048). Write the conditions for applicability of the distribution function which will be used to solve the problem.
7. Prove that (a) $\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i p x} d p=\delta(x)$; (b) Prove that $\delta(\mathrm{x})=\delta(-\mathrm{x})$
8. Divide 24 into three parts such that the continued product of the first, square of the second and the cube of the third will be minimum?
9. A spherical ice piece is falling freely under gravity and in each instant the mass increases by λ times of its surface area. Determine the velocity and position of the ice piece at any instant of time.
10. What do you mean by exact differential? Determine whether $\left(2 x y^{2}+3 y \cos 3 x\right) d x+$ $\left(2 x^{2} y+\sin 3 x\right) d y$ is an exact differential. If so, find the function.
